The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model
نویسندگان
چکیده
OBJECTIVE To demonstrate the adverse impact of ignoring statistical interactions in regression models used in epidemiologic studies. STUDY DESIGN AND SETTING Based on different scenarios that involved known values for coefficient of the interaction term in Cox regression models we generated 1000 samples of size 600 each. The simulated samples and a real life data set from the Cameron County Hispanic Cohort were used to evaluate the effect of ignoring statistical interactions in these models. RESULTS Compared to correctly specified Cox regression models with interaction terms, misspecified models without interaction terms resulted in up to 8.95 fold bias in estimated regression coefficients. Whereas when data were generated from a perfect additive Cox proportional hazards regression model the inclusion of the interaction between the two covariates resulted in only 2% estimated bias in main effect regression coefficients estimates, but did not alter the main findings of no significant interactions. CONCLUSIONS When the effects are synergic, the failure to account for an interaction effect could lead to bias and misinterpretation of the results, and in some instances to incorrect policy decisions. Best practices in regression analysis must include identification of interactions, including for analysis of data from epidemiologic studies.
منابع مشابه
استفاده از مدل چندجملهای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده
Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...
متن کاملThe evaluation of Cox and Weibull proportional hazards models and their applications to identify factors influencing survival time in acute leukem
Introduction: The most important models used in analysis of survival data is proportional hazards models. Applying this model requires establishment of the relevance proportional hazards assumption, otherwise it world lead to incorrect inference. This study aims to evaluate Cox and Weibull models which are used in identification of effective factors on survival time in acute leukemia. Me...
متن کاملDeterminant factors of survival time in a cohort study on HIV patient using by time-varying cox model: Fars province, south of Iran
Background and aims: The pandemic of AIDS is a global emergency and one of the biggest challenges in social and individual life. This study aimed to evaluate the survival time of HIV patients and its effective factors. Methods: This historical cohort study was conducted on the individuals infected with HIV in Fars province, south of Iran, during 2006 to 2...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کامل